
Generation, Streaming and Presentation of
Electronic Program Guide

Cyril Concolato
Télécom ParisTech; Institut Télécom; CNRS LTCI

46, rue Barrault, 75013 Paris, France
Cyril.Concolato@telecom-paristech.fr

ABSTRACT
With the deployment of IPTV and mobile TV systems on the one
hand, and the diversity of devices capable of displaying rich-
media content on the other hand, the traditional monolithic way of
presenting electronic program guide (EPG) data is becoming
inappropriate. In this paper, we describe a system which proposes
to separate the generation of presentable EPG data from its actual
display. We present a system which achieves the generation and
streaming of EPG based on streamable declarative languages. This
system allows a reactive distribution and the efficient presentation
of dynamic EPG.

Categories and Subject Descriptors
I.3.2 [Computer Graphics]: Graphics Systems –
Distributed/network graphics; I.7.2 [Document and Text
Processing]: Document Preparation – Hypertext/hypermedia,
Standards

General Terms
Design, Experimentation, Languages, Performance.

Keywords
Electronic Program Guide, Presentation Language, Streaming.

1. INTRODUCTION
Traditional Electronic Program Guides (EPG), displayed on
today’s televisions, are the result of the on-the-fly generation of
an interactive presentation based on information extracted from
the broadcast channel. The generation and presentation are
performed in a single place using software embedded either in the
TV or in a STB, developed using programmatic languages. In
traditional DVB environments, the EPG information is extracted
using Event Information Tables (EIT) [1]. With the deployment of
IPTV and mobile TV systems, this ecosystem is currently
experiencing many changes. First, the number of sources, the type
and quantity of information is changing. For example, EPG
information can be retrieved from Web feeds (e.g. XMLTV [8])
or from DVB-IPDC [2] channels in the form of TV Anytime data
 [11]. Second, the number and type of devices capable of

displaying rich media content (such as EPG) is also changing: TV,
PC, PDA, Smartphones, Portable Media Players (PMP). All these
devices have different screen configurations, interaction methods,
connectivity features or processing power. The existing method
which consists in embedding monolithic software to process and
display EPG from a single source is therefore not well suited
anymore because of development costs. As a consequence, more
and more solutions now rely on dedicated and tailored Web
browsers such as [3] to display EPG.

The generation and display of EPG is not a new research topic
and many papers have been written on the topic. Most of them
focus on the design of efficient interactive paradigms [14] or on
recommendation systems [16]. In this work, we show a system
which decouples the generation and the display of the EPG. This
can be viewed as an example of the secondary screen approach
described in [17]. The EPG is generated in a device, different
from the rendering device, tuned to the broadcast channel to
retrieve the raw EPG data. This data is then transformed into a
presentation form which is streamed to the remote rendering
device (phone, PMP). In this paper, we use the 3GPP DIMS [4]
declarative language, rather than XHTML, to first benefit from its
light, declarative rich graphics and animation features but also, to
allow streaming of the EPG. The use of streaming follows the
push approach of broadcasting technologies used in the delivery
of raw EPG data but also allows guarantying a strong
synchronization between the presentation and raw data.
Additionally, streaming, coupled with the DIMS update
mechanism enables light presentation processing in the client.

In the remaining of this paper, we present in Section 2 the
possible architectures for such a system. Then, in Section 3, we
detail our system. In Section 4, we show and discuss some results
of generated EPG. Finally, we conclude this paper and propose
future work in Section 5.

2. EPG GENERATION AND
PRESENTATION ARCHITECTURES
This section presents existing approaches for the generation,
delivery and presentation of EPG. We focused only on approaches
where a declarative language is used to describe the presentation.
From the literature [15] or from existing products, we propose to
classify the approaches into two main extreme approaches,
depicted in Figure 1. We note that this classification is actually
rather generic and could be applicable to the generation,
streaming and presentation of many types of metadata other than
EPG. For both approaches, we assume that the metadata comes
from either some broadcaster content management system or is
dynamically produced, as for live events. In both cases, we also

assume that a metadata filtering mechanism can be used at the
server-side or at the client-side either driven by direct user
interaction (e.g. show sport programs only) or based on user
modeling systems.

Figure 1 – Alternative approaches for the generation, delivery
and presentation of EPG

2.1 The Metadata-Driven Approach
In this first approach, the EPG information is delivered in the
form of metadata, and no information is sent about how this
metadata should be presented. The receiver is in charge of
presenting the metadata in a suitable form. This process can be
driven by some specific generation software which creates a
declarative presentation (e.g. using XML Transformations). This
presentation is then passed to the presentation engine for display,
typically a browser. Alternatively, this process can be driven
directly by the presentation engine. In that case, the presentation
engine loads some presentation templates, and then fills the
template with data from the metadata engine. Such metadata, e.g.
the name of the current program, can be pulled using some
specific API (such as the Joost Widget API [7]); or if the metadata
engine is implemented as a web server, by using the
XMLHttpRequest standard (XHR) [6]. In an other alternative, the
metadata can be pushed to the presentation engine.

The advantages of the metadata-driven approach are the
following. First, since the presentation data is generated at the
receiver side, it can be easily adapted to the terminal
characteristics (e.g. screen size, input methods) and to the user
preferences (metadata of interest, user model) without privacy
concerns. Second, since this approach delivers ‘raw’ metadata
without presentation data, it is efficient in terms of bandwidth.
Third, from a server point-of-view, the implementation is simple
since it does not have to deal with presentation data.

The short-comings of this approach on the other hand are the
following. First, in order to display the presentation, the receiver
must implement a metadata engine and the associated interface to
the presentation engine. In the context of the growing number of
sources and formats of data, it means that the receiver must
implement a metadata engine capable of handling several types of
metadata. An alternative would be to aggregate all the metadata in
one unique form. In some sense, this alternative would transfer
some intelligence from the client to the server. Second, in this
extreme approach, the presentation look and feel is driven by
hardcoded presentation parameters stored on the client. It means
that the presentation style cannot change over time (changing
colors, fonts or even navigation scheme). Third, since each
receiving device can use presentation different parameters, the
metadata broadcaster has no control over how the metadata will
be presented on the receiving terminal. We believe this is an

important problem which leads towards using an approach where
presentation data is sent to the receiver.

2.2 The Presentation-Driven Approach
In this second extreme approach, the broadcasting server
aggregates the different sources of metadata, transforms them into
presentation data, and finally delivers the presentation data to the
presentation engine of the client. Oppositely to the previous
approach, no ‘raw’ metadata is sent to the client. In this approach,
the presentation data can be queried from or pushed by the server.

This approach has the following advantages. First, the client does
not implement a metadata engine. Its footprint is therefore
smaller. Second, with this approach, it is possible to update the
presentation of the EPG for example to change the look of the
EPG during the Christmas time or the Olympics, or to change the
navigation method. Third, in this approach, the presentation can
be displayed in the receivers as the author decided.

However, this approach also has limitations. First, it requires
more processing at the server side. Second, the diversity of
rendering devices hardens the task of adapting the presentation to
the terminal characteristics (presentation formats, screen size,
input methods). Third, since no metadata is sent, there are cases
where the loss of semantics in the presentation data prevents the
client from performing semantic filtering (e.g. showing only
Sports) or makes it more complex. Finally, since the metadata is
transformed into presentation data, a higher bandwidth is required
to transmit the presentation style and navigation paradigm.

2.3 Summary
Table 1 summarizes the comparison between the previous
approaches. Obviously between those approaches, many hybrid
approaches can exist. One interesting approach could consist in
sending some metadata along with some presentation information
to control the presentation (at the cost of bandwidth occupancy).

Table 1 – Comparison between the metadata and presentation-
driven approaches for the generation and presentation of EPG

 Metadata-
driven

Presentation-
driven

Server Complexity less more
Client Complexity more less
Bandwidth required less more
Adaptation handling simple complex
Client-side semantic
filtering

simple complex

Presentation control no yes

There are several options to do that. One could leverage the
ability of the languages like XML to mix data. In that case, a
server could deliver a mixed document with presentation data,
EPG metadata and the logic to build the final presentation.
Another option would be to use separate the data into files or
streams and to link the presentation data to the metadata. Files
could be acquired using XHR or using file delivery mechanisms
such as the DVB Object Carousel [9] or the FLUTE protocol
 [10]. Streams could use the MPEG-7 BiM [12] standard for
metadata and for the presentation data, 3GPP DIMS (MPEG-4
LASeR) or MPEG-4 BIFS [5].

3. THE PINGO SYSTEM
Our system, called PINGO, builds upon the previous analysis.
The use case for the PINGO System is the in-house redistribution
of television signals, including the EPG information. Indeed, the
deployment of mobile TV and terrestrial TV do not allow, for
now, for correct in-door reception of the signal by devices like
mobile phones or Portable Media Players. In the PINGO system, a
centralized device, named PINGO Box, standalone or integrated
in a Set Top Box or in an Internet Service Provider Box, receives
the TV signal. The raw EPG data is extracted from this broadcast
TV signal (mobile or fix) and possibly from other internet
sources. The PINGO box redistributes the EPG indoor for other
mobile devices (phones, PMP) connected via WiFi.

In this scenario, there is no strong bandwidth constraint for the
delivery of EPG data. Additionally, given the requirements that
we want to minimize the mobile client developments and
processing requirements, and we want to keep fine-grain
synchronization between raw the EPG data and the presentation
form, we decided to use a streaming delivery of EPG data in a
presentation form. Given its mobile standard status, we selected
the 3GPP DIMS format.

The EPG raw data is therefore transformed, based on templates,
into a stream of presentation information which is updated
regularly as new EPG data arrives. In this system, since the source
of EPG data is mainly the broadcast channel, the EPG data is
delivered in a push mode, using scene updates, as opposed to
traditional AJAX pull mode.

The system functions as depicted in Figure 3. First, a designer
creates two templates. The first template, called the Main
Template, defines the general look and feel of the EPG. This
template also handles the navigation between channels and
display of information for the current channel. This template is
initially empty of programs, but it identifies an entry point for the
programs to be inserted, called the Event Dictionary. The second
template, called the Event Template, defines the structure of a TV
Event or TV Program. It is void of data but contains several entry
points for the Event Information to be inserted (e.g. the name of
the program, start time, duration, description …). These two
templates are written in the target presentation language. Once
written, these templates are provided to a server.

The server (in the PINGO Box) is in charge of three tasks: first,
sending the initial empty presentation; second, cloning the Event
template, filling it in based on the EPG data it receives and
sending the result in the form of a presentation update; and third,
aggregating the presentation updates to provide a complete
presentation for clients who have not joined the streaming session
from the beginning or for those (e.g. Web browsers) who just
support SVG (not DIMS).

The client in this system only implements a 3GPP DIMS player, it
receives an initial scene which displays an empty EPG and then
receives updates that progressively add new programs, replace the
current time, or delete old programs. Figure 2 shows one possible
scene structure. The scene is made of some Javascript code to
create, at initialization, the layout of the EPG based on the
terminal characteristics. It also contains the event dictionary on
which updates are applied. When updates are received, some
Javascript code is executed to determine if the program should be
displayed based on the presentation time and the program time, on

previous user interactions and on the current EPG view. In this
example, the whole EPG navigation or channel switching is
realized using Javascript code.

Figure 2 – Description of the end-to-end chain for the creation,
delivery and presentation of EPG data in the PINGO System

4. DISCUSSIONS AND RESULTS
In this approach, a few points should be noticed. First, the
description of a program is transmitted in the target presentation
language (not in a dedicated metadata language), and then
analyzed to produce the Javascript equivalent in order to be able
to do client-side filtering and navigation. Programs are not
described using some generic EPG XML format. This choice has
been made to limit the client-side processing because otherwise if
the program were sent using a generic XML format, the client
would have had to create the SVG objects that represent the
program using Javascript. Previous experiments showed us that
the creation of objects with Javascript is slower than the creation
of objects upon reception of scene updates. Similarly, in our
system, we have tried to minimize the read/write access from the
Javascript to the scene and we kept in Javascript only algorithmic
operations (search, sort …). Only minor attribute changes are
done to the SVG scene using Javascript.

This system has been implemented and validated using the GPAC
DIMS Player [13]. Figure 3 shows snapshots of the SVG/DIMS
EPG produced by our system. Figure 4 demonstrates its usage of
three mobile devices (SPV C500, Samsung i780 and Glofiish
V900) running Windows Mobile and the GPAC player. Similar
experiments have been also made using the MPEG-4 BIFS
language.

Figure 3 – Empty (left) and filled (right) PINGO
Electronic Program Guide

Figure 4 – Adapted display of the PINGO Electronic Program
Guide on three different mobile devices

5. CONCLUSION
In this paper, we have exposed the existing approaches for the
generation and display of electronic program guides for
interactive TV. We have discussed the pros and cons of these
approaches. We have presented our scenario and argued for the
need for an approach based on streamable presentation languages.
This approach allows separating the decoding or interpretation of
raw EPG data from their presentation, thus allowing the display of
EPG on constrained devices. In our system, the use of declarative
presentation languages enables the designer control over the
presentation and its adaptation to the device characteristics. We
believe that this approach, applied here to EPG, is actually very
generic and could be applied to the presentation of any type of
metadata, through the use of templates. In future work, we will
investigate several improvements to this system: the ability to
have more input formats (web feeds), to support more output
formats (XHTML). We will also work on improvement of the
adaptation features of our prototype.

6. ACKNOWLEDGMENTS
This work has been partly financed by the French General
Directorate for enterprises and the French Business Cluster for
Digital Content.

7. REFERENCES
[1] “Digital Video Broadcasting (DVB); Specification for

Service Information (SI) in DVB systems”,
ETSI EN 300 468 V1.7.1

[2] “Digital Video Broadcasting (DVB); IP Datacast over DVB-
H: Electronic Service Guide”, ETSI TS 102 471 V1.2.1

[3] ANT Fresco Browser, http://www.antlimited.com

[4] “Dynamic and Interactive Multimedia Scenes (DIMS)”,
3GPP TS 26.142, http://www.3gpp.org/ftp/Specs/html-
info/26142.htm

[5] “Information technology - Coding of audio-visual objects -
Part 11:Scene Description and Application Engine”,
ISO/IEC IS 14496-11

[6] “The XMLHttpRequest Object”, W3C Working Draft 15
April 2008, http://www.w3.org/TR/XMLHttpRequest/

[7] Joost Widget API, Runtime Engine Information,
http://dev.joost.com/widgets/api/engine.html

[8] The XML TV Project,
http://wiki.xmltv.org/index.php/XMLTVProject

[9] “DVB Data Broadcasting Implementation Guidelines”,
ETSI TR 101 202 V1.2.1

[10] “File Delivery over Unidirectional Transport”, RFC 3926,
http://www.faqs.org/ftp/rfc/rfc3926.txt

[11] “Broadcast and On-line Services: Search, select, and rightful
use of content on personal storage systems (TV-anytime)”,
ETSI TS 102 822

[12] “Information technology - Multimedia content description
interface - Part 1: Systems”, ISO/IEC IS 15938-1

[13] Le Feuvre, J., Concolato, C., and Moissinac, J. 2007. GPAC:
open source multimedia framework. In Proceedings of the
15th international Conference on Multimedia (Augsburg,
Germany, September 25 - 29, 2007). MULTIMEDIA '07.
ACM, New York, NY, 1009-1012.

[14] Cruickshank, L., Tsekleves, E., Whitham, R. and Hill, A.
2007. Making Interactive TV easier to use: Interface design
for a second screen approach. The Design Journal, 10, 3.

[15] Lee, H., Yang, S.-J., Kim, J.-G, and Hong, J. 2005.
Personalized TV services based on TV-anytime for PDR. In
Proceedings of the International Conference on Consumer
Electronics (January 8-12, 2005). ICCE 05, 115-116.

[16] Harrison, C., Amento, B., and Stead, L. 2008. iEPG: an ego-
centric electronic program guide and recommendation
interface. In Proceeding of the 1st international Conference
on Designing interactive User Experiences For TV and
Video (Silicon Valley, California, USA, October 22 - 24,
2008). UXTV '08, vol. 291. ACM, New York, NY, 23-26.

[17] Cesar, P., Bulterman, D. C., and Jansen, A. J. 2008. Usages
of the Secondary Screen in an Interactive Television
Environment: Control, Enrich, Share, and Transfer
Television Content. In Proc. of the 6th European Conference
on Changing Television Environments (Salzburg, Austria,
July 03 - 04, 2008). M. Tscheligi, M. Obrist, and A.
Lugmayr, Eds. Lecture Notes In Computer Science, vol.
5066. Springer-Verlag, Berlin, Heidelberg, 168-177.

